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Abstract
We revisit the superadditivity conjecture for skew information which has
recently been disproved by Hansen (2007 J. Stat. Phys. 126 643). We establish
two weak forms of superadditivity which are conjectured to be optimal. Our
results show that in a certain sense the superadditivity is true with ‘50% off’.
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Mathematics Subject Classification: 94A17, 81Q10, 15A90

1. Introduction

Let ρ be a density operator (i.e., state) and H an observable for some finite-dimensional
quantum system. In quantum mechanics, it is important to construct various numerical
quantities synthesizing physical information from the pair of ρ and H. Prominent examples are
the mean (expectation), variance and probabilities generated from the spectral decompositions.

From the informational perspective, a particularly interesting and significant notion in
this context is the skew information

I (ρ,H) = − 1
2 tr[

√
ρ,H ]2

introduced by Wigner and Yanase in their study of quantum measurement theory [16]. Here,
the square bracket denotes a commutator, i.e., [A,B] = AB −BA. The skew information was
originally introduced as a measure of information content and can be interpreted as a quantum
extension of the classical Fisher information [2, 3, 8, 10, 11, 13]. The celebrated convexity of
I (ρ,H) in ρ, and, more generally, the Lieb convexity theorem for the Wigner–Yanase–Dyson
information

Iγ (ρ,H) = − 1
2 tr[ργ ,H ][ρ1−γ ,H ], γ ∈ (0, 1),

has played a remarkable role in quantum information theory [7, 12]. In particular, the first
proof of strong subadditivity of quantum entropy and the monotonicity of quantum relative
entropy are essentially based on this convexity [12].

1751-8113/08/135301+09$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/13/135301
mailto:luosl@amt.ac.cn
http://stacks.iop.org/ JPhysA/41/135301


J. Phys. A: Math. Theor. 41 (2008) 135301 L Cai et al

Apart from the convexity, another important and intriguing issue for skew information is
superadditivity concerning composite systems. Let ρ be a bipartite density operator shared by
parties a and b, with respective marginals ρa = trbρ and ρb = traρ (partial trace). Let Ha and
Hb be observables for parties a and b, respectively, then the superadditivity conjecture states
that [16]

I (ρ,Ha ⊗ 1 + 1 ⊗ Hb) � I (ρa,Ha) + I (ρb,Hb). (1)

Here 1 stands for the identity operator (depending on the system). This conjectured inequality
seems very intuitive and is required by Wigner and Yanase [16], as well as by Lieb [7], as
a necessary condition for the skew information to be a reasonable notion of information. Its
classical analogy, the superadditivity of the classical Fisher information, was established by
Carlen in 1991 [1]. However, the quantum world is not so simple, and the present status
concerning the superadditivity of skew information may be summarized as follows:

(i) The conjecture is not true in its general form. Hansen constructed a numerical
counterexample in 2007 [4]. Furthermore, Seiringer showed that the superadditivity,
which holds for all pure bipartite states, cannot be extended to pure tripartite states [15].

(ii) The conjecture is true in many special cases, e.g., when ρ is any pure state or certain
mixed states [9]. Moreover, random numerical experiment shows that for two-qubit states
the violations of superadditivity are relatively rare.

In this paper, we revisit the superadditivity issue and establish two weak forms of
superadditivity property for the skew information in section 2. These results rescue the
superadditivity in a certain sense and are conjectured to be optimal. In section 3, we construct
a family of simple counterexamples to superadditivity and another conjectured inequality.
Finally, section 4 is devoted to discussions.

2. Weak superadditivity

Since the original superadditivity conjecture (1) is not true, it is desirable to inquire as to what
extent it can be modified. In this section, we prove two alternative forms of superadditivity.

First, note that if inequality (1) were true, then by replacing Hb with −Hb and noting that
I (ρb,−Hb) = I (ρb,Hb), we would have

I (ρ,Ha ⊗ 1 − 1 ⊗ Hb) � I (ρa,Ha) + I (ρb,Hb). (2)

This inequality stands on an equal footing with inequality (1). By adding them together, we
would obtain

I (ρ,Ha ⊗ 1 + 1 ⊗ Hb) + I (ρ,Ha ⊗ 1 − 1 ⊗ Hb) � 2(I (ρa,Ha) + I (ρb,Hb)). (3)

We will show that although neither inequality (1) nor inequality (2) is always true (actually
they are equivalent in the sense that if one is always true, then the other is also true), their
combination, i.e., inequality (3), is always true. This implies that, for any fixed ρ,Ha and Hb,
at least one of the inequalities (1) and (2) has to be true.

Proposition 1. It holds that

I (ρ,Ha ⊗ 1 + 1 ⊗ Hb) + I (ρ,Ha ⊗ 1 − 1 ⊗ Hb) � 2(I (ρa,Ha) + I (ρb,Hb)).

Proof. By the definition, we have

I (ρ,Ha ⊗ 1 ± 1 ⊗ Hb) = − 1
2 tr[

√
ρ,Ha ⊗ 1 ± 1 ⊗ Hb]2

= − 1
2 tr([

√
ρ,Ha ⊗ 1] ± [

√
ρ, 1 ⊗ Hb])2

= I (ρ,Ha ⊗ 1) + I (ρ, 1 ⊗ Hb) ∓ tr[
√

ρ,Ha ⊗ 1][
√

ρ, 1 ⊗ Hb].
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Consequently, by adding the above identities, we have

I (ρ,Ha ⊗ 1 + 1 ⊗ Hb) + I (ρ,Ha ⊗ 1 − 1 ⊗ Hb) = 2(I (ρ,Ha ⊗ 1) + I (ρ, 1 ⊗ Hb)).

But it is known that [7, 10]

I (ρ,Ha ⊗ 1) � I (ρa,Ha), I (ρ, 1 ⊗ Hb) � I (ρb,Hb).

The desired inequality follows. �

Next, we prove the following alternative weak form of superadditivity.

Proposition 2. It holds that

I (ρ,Ha ⊗ 1 + 1 ⊗ Hb) � 1
2 (I (ρa,Ha) + I (ρb,Hb)). (4)

We first prepare two lemmas.

Lemma 1. Let ρ be a bipartite density operator shared by parties a and b, with marginals
ρa = trbρ and ρb = traρ. Let σ be another such density operator with marginals σa = trbσ
and σb = traσ . Let

D(ρ, σ ) = tr(
√

ρ − √
σ)2

be the so-called (quantum) Hellinger distance as defined in [10]. Then

D(ρ, σ ) � D(ρa, σa), D(ρ, σ ) � D(ρb, σb).

This is actually a particular instance of monotonicity of the general monotonic metrics
[13], and also follows readily from theorem 2 in [10] if we note that D(ρ, σ ) = 2 − 2A(ρ, σ )

with A(ρ, σ ) = tr
√

ρ
√

σ .

Lemma 2. Let ρ be a density operator and H an observable. Let ρ(t) = e−itH ρ eitH , t ∈ R,
then for small |t |, we have the following asymptotic expansion:

D(ρ(t), ρ) = 1
2I (ρ,H)t2 + o(t2).

Proof. Apparently, since ρ(0) = ρ, we have D(ρ(t), ρ)|t=0 = 0. Next, from ρ(t) =
e−itH ρ eitH , we have

√
ρ(t) = e−itH √

ρ eitH , and thus

∂

∂t

√
ρ(t) = i e−itH [

√
ρ,H ] eitH .

Consequently,

∂

∂t
D(ρ(t), ρ) = −2

∂

∂t
tr
√

ρ(t)
√

ρ

= −2i · tr e−itH [
√

ρ,H ] eitH √
ρ.

Putting t = 0, we obtain

∂

∂t
D(ρ(t), ρ)|t=0 = −2i · tr[

√
ρ,H ]

√
ρ = 0.

Moreover, by theorem 3(i) in [10], we have

∂2

∂t2
D(ρ(t), ρ)|t=0 = 1

2
I (ρ,H).

The desired expansion follows.
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Now, we proceed to the proof of proposition 2. Let H = Ha ⊗ 1 + 1 ⊗ Hb, and for t ∈ R,
put

ρ(t) = e−itH ρ eitH , ρa(t) = e−itHaρa eitHa ,

then

ρa(t) = trbρ(t).

From lemma 1, we have

D(ρ(t), ρ) � D(ρa(t), ρa).

On the other hand, from lemma 2, for small |t |, we have the asymptotic expansions

D(ρ(t), ρ) = 1
2I (ρ,H)t2 + o(t2) D(ρa(t), ρa) = 1

2I (ρa,Ha)t
2 + o(t2).

Consequently, we must have

I (ρ,H) � I (ρa,Ha).

Similarly, we have

I (ρ,H) � I (ρb,Hb).

Now inequality (4) follows from combining the above two inequalities. �

Remark 1. Proposition 2 can also be proved by the use of the advanced theory of monotonic
metrics, which is developed by Petz [13]. Our method is elementary and direct. Furthermore,
proposition 2 can be generalized to any monotonic quantum Fisher information.

Remark 2. From the proof of proposition 2, we know that

I (ρ,Ha ⊗ 1 + 1 ⊗ Hb) � I (ρa,Ha).

On the other hand, we have

I (ρ,Ha ⊗ 1) � I (ρa,Ha).

One naturally wants to know whether

I (ρ,Ha ⊗ 1 + 1 ⊗ Hb) � I (ρ,Ha ⊗ 1). (5)

We will demonstrate that this last inequality is not true in general in the next section.
We believe that proposition 2 is optimal in the following sense:

Conjecture 1. Let β be the largest positive constant such that

I (ρ,Ha ⊗ 1 + 1 ⊗ Hb) � β(I (ρa,Ha) + I (ρb,Hb))

for any density operator ρ and observables Ha and Hb, that is,

β = inf
I (ρ,Ha ⊗ 1 + 1 ⊗ Hb)

I (ρa,Ha) + I (ρb,Hb)

where the inf is over all ρ, Ha and Hb in finite dimensions and 0
0 is understood to be 1. Then

β = 1
2 .

From Hansen’s counterexample [4], as well as the simple analytical counterexamples in the
next section, we know that β < 1. On the other hand, from proposition 2, we know that
β � 1

2 . We have also performed extensive numerical studies in the two-qubit cases. The
following example shows that at least β � 0.6749.
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Example 1. Consider the two-qubit density operator

ρ = 1

270

⎛
⎜⎜⎝

80 8 30 80
8 30 1 8

30 1 80 30
80 8 30 80

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.2963 0.0296 0.1111 0.2963
0.0296 0.1111 0.0037 0.0296
0.1111 0.0037 0.2963 0.1111
0.2963 0.0296 0.1111 0.2963

⎞
⎟⎟⎠

acting on Hilbert space C2 ⊗ C2, and observables

Ha =
(

13 1
1 0

)
, Hb =

(
0 1
1 13

)
.

The eigenvalues of ρ are

λ1 = 0, λ2 = 0.1068, λ3 = 0.2299, λ4 = 0.6633

with corresponding eigenvectors

|ψ1〉 =

⎛
⎜⎜⎝

0.7071
0
0

−0.7071

⎞
⎟⎟⎠ , |ψ2〉 =

⎛
⎜⎜⎝

0.0766
−0.9916
−0.0704
0.0766

⎞
⎟⎟⎠ ,

|ψ3〉 =

⎛
⎜⎜⎝

−0.2721
−0.1072
0.9168

−0.2721

⎞
⎟⎟⎠ , |ψ4〉 =

⎛
⎜⎜⎝

0.6481
0.0722
0.3932
0.6481

⎞
⎟⎟⎠ .

The square root of ρ is given by

√
ρ =

⎛
⎜⎜⎝

0.3796 0.0273 0.0862 0.3796
0.0273 0.3311 −0.0012 0.0273
0.0862 −0.0012 0.5305 0.0862
0.3796 0.0273 0.0862 0.3796

⎞
⎟⎟⎠ .

Note that

H = Ha ⊗ 1 + 1 ⊗ Hb =

⎛
⎜⎜⎝

13 1 1 0
1 26 0 1
1 0 0 1
0 1 1 13

⎞
⎟⎟⎠ .

It can be evaluated that

I (ρ,H) = − 1
2 tr[

√
ρ,H ]2 = 2.8224.

On the other hand, the marginal states (partial traces) are given by

ρa =
(

0.4074 0.1407
0.1407 0.5926

)
, ρb =

(
0.5926 0.1407
0.1407 0.4074

)
,

and it can be evaluated that

I (ρa,Ha) = I (ρb,Hb) = 2.0909.

Therefore, we conclude that

I (ρ,H) ≈ 0.6749 × (I (ρa,Ha) + I (ρb,Hb))

and thus β � 0.6749. We conjecture that β = 1
2 .

5



J. Phys. A: Math. Theor. 41 (2008) 135301 L Cai et al

3. Simple counterexamples

In this section, we will construct a family of analytical counterexamples to the superadditivity
inequality (1). These counterexamples are somewhat simpler than the remarkable original
example of Hansen [4]. We will also construct a counterexample to the conjectured
inequality (5).

Example 2. Consider a two-qubit system with Hilbert space C2 ⊗ C2. Let n > 2 and take

ρ = 1

n

⎛
⎜⎜⎝

n − 2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎟⎠ , Ha =

(
0 1
1 0

)
, Hb =

(
0 1
1 0

)
.

We will show that

I (ρ,Ha ⊗ 1 + 1 ⊗ Hb) < I (ρa,Ha) + I (ρb,Hb)

for large n.
First, we evaluate I (ρa,Ha) and I (ρb,Hb). Clearly,

ρa = 1

n

(
n − 1 0

0 1

)

which is already diagonal. Thus,

√
ρa = 1√

n

(√
n − 1 0
0 1

)
,

and

[
√

ρa,Ha] = 1√
n

(
0

√
n − 1 − 1

−√
n − 1 + 1 0

)
,

form which we readily obtain

I (ρa,Ha) = −1

2
tr[

√
ρa,Ha]2 = 1

n
(n − 2

√
n − 1). (6)

Similarly, we have

I (ρb,Hb) = 1

n
(n − 2

√
n − 1). (7)

Next, we evaluate I (ρ,H) with H = Ha ⊗ 1 + 1 ⊗ Hb. Since the spectral decomposition
of ρ can be written as

ρ =
∑

j

λj |ψj 〉〈ψj |

with eigenvalues λ1 = n−2
n

, λ2 = 2
n
, λ3 = λ4 = 0 and eigenvectors

|ψ1〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , |ψ2〉 = 1√

2

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠ , |ψ3〉 = 1√

2

⎛
⎜⎜⎝

0
1

−1
0

⎞
⎟⎟⎠ , |ψ4〉 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ,

we readily obtain

√
ρ =

∑
j

√
λj |ψj 〉〈ψj | = 1√

2n

⎛
⎜⎜⎝

√
2(n − 2) 0 0 0

0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎟⎠ .

6
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Note that

H = Ha ⊗ 1 + 1 ⊗ Hb =

⎛
⎜⎜⎝

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ ,

we have

[
√

ρ,H ] = 1√
2n

⎛
⎜⎜⎝

0 N N 0
−N 0 0 2
−N 0 0 2

0 −2 −2 0

⎞
⎟⎟⎠

where N = √
2(n − 2) − 2. Consequently,

I (ρ,H) = −1

2
tr[

√
ρ,H ]2 = 1

n
(2n − 4

√
2(n − 2) + 4).

From equations (6) and (7), we have

I (ρa,Ha) + I (ρb,Hb) = 1

n
(2n − 4

√
n − 1).

Therefore, when n > 10, we have

I (ρ,H) < I (ρa,Ha) + I (ρb,Hb),

which contradicts the superadditivity inequality (1).

Example 3. The bipartite density operator ρ and the observable Ha are the same as in
example 2, and the observable Hb is modified to

Hb =
(

0 x

x 0

)
, x ∈ R.

Now

H = Ha ⊗ 1 + 1 ⊗ Hb =

⎛
⎜⎜⎝

0 x 1 0
x 0 0 1
1 0 0 x

0 1 x 0

⎞
⎟⎟⎠ .

Direct calculations yield

[
√

ρ,H ] = 1√
2n

⎛
⎜⎜⎝

0 X Y 0
−X 0 0 x + 1
−Y 0 0 x + 1
0 −x − 1 −x − 1 0

⎞
⎟⎟⎠

where

X =
√

2(n − 2)x − x − 1, Y =
√

2(n − 2) − x − 1.

Consequently,

I (ρ,H) = −1

2
tr[

√
ρ,H ]2

= 1

2n
(X2 + Y 2 + 2(x + 1)2)

= 1

n
((n −

√
2(n − 2))x2 + (4 − 2

√
2(n − 2))x + n −

√
2(n − 2)). (8)

7
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First, put x = 0, we obtain

I (ρ,Ha ⊗ 1) = 1

n
(n −

√
2(n − 2)). (9)

Next, we take

x = −2 +
√

2(n − 2)

n − √
2(n − 2)

,

then

I (ρ,H) = 1

n

(
n −

√
2(n − 2) − (2 − √

2(n − 2))2

n − √
2(n − 2)

)
. (10)

Comparing equations (9) and (10), we see that

I (ρ,H) < I (ρ,Ha ⊗ 1)

which serves as a counterexample to inequality (5). On the other hand, the reverse of inequality
(5) cannot be true neither as can be seen by taking x = 1 in equation (8), then

I (ρ,H) = 1

n
(2n − 4

√
2(n − 2) + 4)

which is larger than I (ρ,Ha ⊗ 1).

4. Discussions

Before Hansen’s counterexample, the superadditivity conjecture was largely believed to be
true, and many particular cases were established. The intuition advertised by Wigner and
Yanase themselves for such a conjecture is that when a composite system is separated into two
parties, the correlations between them are lost, and thus the skew information decreases [16].
In particular, this is true in both the classical cases and for pure states in the quantum cases. It is
further proved for many mixed states [9]. However, the quantum world is often counterintuitive
and subtle, and our present results illustrate, in some sense, that the superadditivity is true with
‘50% off’.

The skew information is just one variant of quantum extensions of the classical Fisher
information, which in turn is essentially the unique infinitesimal metric form in the space of
probabilities. There are a variety of other variants of quantum Fisher information which are
important in quantum estimation theory [2, 5, 6, 13, 14]; it would be worth investigating their
superadditivity and implications for quantum information theory.

We do not know if there is any analytical tool to investigate the conjecture that β = 1
2 . It

seems that it can only be resolved by numerical studies. We also conjecture that β = 1
2 is not

achievable in finite dimensions.
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